Skip to main content

Cum sa definesti un provider custom pentru cache

.NET 4.0 ne-a adus si posibilitatea de a controla output caching. Pana in momentul acesta puteam sa controlam obiectele la care sa se faca cache. Daca de exemplu avem o actiune la care doream sa facem cache, puteam sa folosim atributul OutputCacheAttribute, prin care puteam defini durata la care sa se faca cache si prin ce parametri acest cache sa difere.
[OutputCache(Duration=20, VaryByParam="none")]
public ActionResult GetItems()
{
// Executa ceva.
}
In momentul in care se face un call spre actiunea GetItems, se verifica daca aceasta exista in cache si daca cache-ul este valid( nu a expirat iar parametri trasmisi prin VaryByParam sunt identici). Daca conditiile sunt indeplinite atunci rezultatul se incarca automat din cache si se trimite mai departe, altfel se executa actiunea GetItems, iar rezultatul se salveaza in cache.
In cazul in care dorim sa definim un provider propiu pentru output cache este nevoie sa scriem o clasa ce sa mosteneasca din OutputCacheProvider.
    public abstract class OutputCacheProvider : ProviderBase
{
public abstract object Get(string key);
public abstract object Add(string key, object entry, DateTime utcExpiry);
public abstract void Set(string key, object entry, DateTime utcExpiry);
public abstract void Remove(string key);
}
Prin intermediul metodelor care ne sunt puse la dispozitie, putem sa controlam provider-ul in totalitate.
In web.config este este nevoie sa specificam ce fel de output cache sa se foloseasca:
<caching>
<outputCache defaultProvider="NameOutPutCache">
<providers>
<add name="NameOutPutCache"
type="FullLocationOfOutputCacheImplementation" />
</providers>
</outputCache>
</caching>

Pentru a vedea un exemplu de implementare puteti sa va uitati aici: http://galratner.com/blogs/net/archive/2010/06/06/write-your-own-outputcacheprovider.aspx
Mai jos puteti sa gasiti un exemplu de outputcach provider pentru MongoDb:
 public class MongoDbOutputCacheProvider : OutputCacheProvider, IDisposable
{
readonly Mongo _mongo;
readonly IMongoCollection<CacheItem> _cacheItems;

public MongoDbOutputCacheProvider()
{
// Initializare coneciune la MongoDb
_mongo = new Mongo();
_mongo.Connect();

var store = _mongo.GetDatabase("OutputCacheProviderDB");
_cacheItems = store.GetCollection<CacheItem>();
}

public override object Get(string key)
{
// Se cauta elementul cu cheia dorita.
var cacheItem = _cacheItems.FindOne(new { _id = key });

//Se deserializeaza elementul gasit.
if (cacheItem != null) {
if (cacheItem.Expiration.ToUniversalTime() <= DateTime.UtcNow) {
_cacheItems.Remove(cacheItem);
} else {
return Deserialize(cacheItem.Item);
}
}

return null;
}

public override object Add(string key, object entry, DateTime utcExpiry)
{

if (utcExpiry == DateTime.MaxValue)
{
utcExpiry = DateTime.UtcNow.AddMinutes(5);
}

// Se adauga elementul in baza de date.
_cacheItems.Insert(new CacheItem
{
Id = key,
Item = Serialize(entry),
Expiration = utcExpiry
});

return entry;
}

public override void Set(string key, object entry, DateTime utcExpiry)
{
var item = _cacheItems.FindOne(new { _id = key });

if (item != null)
{
// In cazul in care elementul deja exista se face update la informatii.
item.Item = Serialize(entry);
item.Expiration = utcExpiry;
_cacheItems.Save(item);
}
else
{
// Se insereaza un element nou.
_cacheItems.Insert(new CacheItem
{
Id = key,
Item = Serialize(entry),
Expiration = utcExpiry
});
}
}

public override void Remove(string key)
{
// Se elimina din MongoDb.
_cacheItems.Remove(new { _id = key });
}

private static byte[] Serialize(object entry)
{
var formatter = new BinaryFormatter();
var stream = new MemoryStream();
formatter.Serialize(stream, entry);

return stream.ToArray();
}

private static object Deserialize(byte[] serializedEntry)
{
var formatter = new BinaryFormatter();
var stream = new MemoryStream(serializedEntry);

return formatter.Deserialize(stream);
}

public void Dispose()
{
_mongo.Disconnect();
_mongo.Dispose();
}
}

Implementarea completa se poate gasi aici:
http://archive.msdn.microsoft.com/mag201103OutputCache/Release/ProjectReleases.aspx?ReleaseId=5514

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(

Azure AD and AWS Cognito side-by-side

In the last few weeks, I was involved in multiple opportunities on Microsoft Azure and Amazon, where we had to analyse AWS Cognito, Azure AD and other solutions that are available on the market. I decided to consolidate in one post all features and differences that I identified for both of them that we should need to take into account. Take into account that Azure AD is an identity and access management services well integrated with Microsoft stack. In comparison, AWS Cognito is just a user sign-up, sign-in and access control and nothing more. The focus is not on the main features, is more on small things that can make a difference when you want to decide where we want to store and manage our users.  This information might be useful in the future when we need to decide where we want to keep and manage our users.  Feature Azure AD (B2C, B2C) AWS Cognito Access token lifetime Default 1h – the value is configurable 1h – cannot be modified

What to do when you hit the throughput limits of Azure Storage (Blobs)

In this post we will talk about how we can detect when we hit a throughput limit of Azure Storage and what we can do in that moment. Context If we take a look on Scalability Targets of Azure Storage ( https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/ ) we will observe that the limits are prety high. But, based on our business logic we can end up at this limits. If you create a system that is hitted by a high number of device, you can hit easily the total number of requests rate that can be done on a Storage Account. This limits on Azure is 20.000 IOPS (entities or messages per second) where (and this is very important) the size of the request is 1KB. Normally, if you make a load tests where 20.000 clients will hit different blobs storages from the same Azure Storage Account, this limits can be reached. How we can detect this problem? From client, we can detect that this limits was reached based on the HTTP error code that is returned by HTTP