Skip to main content

Opt greseli de design care ne pot afecta aplicatia

Am inceput sa studiez design patterns si am inceput cu o carte de a celor de la Gof (Gang of Four). In aceasta carte am gasit opt greseli de design care ne pot afecta aplicatia:
  1. Crearea unui obiect folosind numele unei clase explicit. In acest fel ajungem sa fim legati direct de o anumita implementare. Pentru a evita acest lucru putem sa folosim o interfata, iar instanta sa o cream in mod indirect, de exemplu printr-un factory.
  2. Dependinte directe fata de sistemul hardware sau software. In cazul in care aplicatia noastra depinde in mod direct de anumite resurse ale sistemului portabilitatea scade in mod direct. Pentru aceaste cazuri putem sa incercam sa folosim un patern precum bridge, pentru a scadea dependintele.
  3. Dependintele fata de o anumita operatie. Cand specificam o anumita operatie, limitam ca lucrurile sa se intample intr-o singura varianta si numai una. Modificările care o sa apara in viitor o sa necesite mai mult timp, deoarece totul este hard-codat.
  4. Dependinta fata de algoritm. De obicei pe parcursul dezvoltării unei aplicatii un algoritm se schimba, din aceasta cauza algoritmii ar trebuii sa fie izolati si schimbati cu usurinta.
  5. Extinderea functionalitatilor prin subclase. In momentul in care trebuie sa adaugam o noua functionalitate, putem foarte simplu sa mostenim din clasa parinte si sa adaugam o noua functionalitate. Dar acest lucru implica sa cunoastem foarte bine clasa de baza, iar in timp poate sa duca la existenta unui numar foarte mari de clase. Acest lucru se poate rezolva prin delegation si composition. Aceste doua mecanisme ne permite sa adaugam functionalitati fara sa avem o inlantuire de subclase.
  6. Clase strans legate intre ele. In momentul in care ajungem sa avem o colectie de clase care sunt strans legate intre ele sistemul devine monolit. Orice modificare ajunge sa fie extrem de greu de facut si necesita cunoasterea foarte buna a sistemului.
  7. Imposibilitatea de a modifica anumite clase. Uneori avem nevoie sa modificam clase la care nu avem acces la codul sursa sau necesita modificarea unui numar mare de subclase. Pentru a evita acest lucru putem sa folosim Adapter sau Visitator pattern.
  8. Dependinte directa fata de un obiect sau o implementare. Este reprezentat in cazul in care o clasa conoaste modul in care o alta clasa functioneaza si este implementat. Modificarea aceste clase poate sa cauzeze modificari in cascada la toate clasele care folosesc clasa respectiva.
http://en.wikipedia.org/wiki/Design_pattern#Gang_of_Four

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(

Azure AD and AWS Cognito side-by-side

In the last few weeks, I was involved in multiple opportunities on Microsoft Azure and Amazon, where we had to analyse AWS Cognito, Azure AD and other solutions that are available on the market. I decided to consolidate in one post all features and differences that I identified for both of them that we should need to take into account. Take into account that Azure AD is an identity and access management services well integrated with Microsoft stack. In comparison, AWS Cognito is just a user sign-up, sign-in and access control and nothing more. The focus is not on the main features, is more on small things that can make a difference when you want to decide where we want to store and manage our users.  This information might be useful in the future when we need to decide where we want to keep and manage our users.  Feature Azure AD (B2C, B2C) AWS Cognito Access token lifetime Default 1h – the value is configurable 1h – cannot be modified

What to do when you hit the throughput limits of Azure Storage (Blobs)

In this post we will talk about how we can detect when we hit a throughput limit of Azure Storage and what we can do in that moment. Context If we take a look on Scalability Targets of Azure Storage ( https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/ ) we will observe that the limits are prety high. But, based on our business logic we can end up at this limits. If you create a system that is hitted by a high number of device, you can hit easily the total number of requests rate that can be done on a Storage Account. This limits on Azure is 20.000 IOPS (entities or messages per second) where (and this is very important) the size of the request is 1KB. Normally, if you make a load tests where 20.000 clients will hit different blobs storages from the same Azure Storage Account, this limits can be reached. How we can detect this problem? From client, we can detect that this limits was reached based on the HTTP error code that is returned by HTTP