Skip to main content

KeyedByTypeCollection

Cati dintre voi ati folosit pana acuma KeyedByTypeCollection? Sa va spun sincer, pana nu de mult nici nu stiam ca exista. Aceasta colectie este un dictionar unde cheile acesteia sunt reprezentate de tipul valorii adaugate in colectie.
KeyedByTypeCollection<object> collection = new KeyedByTypeCollection<object>();
collection.Add("Car");
collection.Add(1);
collection.Add(1.1);
collection.Add("Dog");  // Aceasta linie o sa arunce exceptie.
Ultima linie o sa arunce exceptie deoarece avem deja in colectie un element de tip string. La prima vedere aceasta colectie pare destul de ciudata si poate genera urmatoarea intrebare:
La ce este folositoare?Un scenariu in care aceasta colectie poate sa foarte folositoare este cand vrem sa avem un factory care sa pastreze obiectele ca si singleton. Folosind aceasta colectie implementarea factory poate sa aibe urmatoarea forma:
public class SingletonFactory<T>
{
     private readonly KeyedByTypeCollection<T> _items = new KeyedByTypeCollections<T>();

     public TItem GetObject<TItem>()
          where TItem : T, new()
     {
          if(!_items.Contains(typeof(TItem))
          {
               _items.Add(new TItem));
          }

          return (TItem)_items[typeof(TItem)];
     }
}
In ce alte scenarii de utilizare ati folosii aceasta colectie?
Enjoy!

Comments

  1. Pai cam in acelasi fel in care o utilizeaza si WCF, prin BindingParametersCollection: sa se asigure ca primeste o colectie de extensii/pluginuri/decorators/whatever de tipuri diferite (fara duplicate), deci tot un fel de sigletons in acel context...

    ReplyDelete
  2. Radu, would you please be more attentive cu privire la spelling? Prea des văd pe blogul tău, ca în postarea de față, „cheiile” sau „folosii”. Și mai sunt o groază de alte scăpări. Thanks.

    ReplyDelete

Post a Comment

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(

Azure AD and AWS Cognito side-by-side

In the last few weeks, I was involved in multiple opportunities on Microsoft Azure and Amazon, where we had to analyse AWS Cognito, Azure AD and other solutions that are available on the market. I decided to consolidate in one post all features and differences that I identified for both of them that we should need to take into account. Take into account that Azure AD is an identity and access management services well integrated with Microsoft stack. In comparison, AWS Cognito is just a user sign-up, sign-in and access control and nothing more. The focus is not on the main features, is more on small things that can make a difference when you want to decide where we want to store and manage our users.  This information might be useful in the future when we need to decide where we want to keep and manage our users.  Feature Azure AD (B2C, B2C) AWS Cognito Access token lifetime Default 1h – the value is configurable 1h – cannot be modified

What to do when you hit the throughput limits of Azure Storage (Blobs)

In this post we will talk about how we can detect when we hit a throughput limit of Azure Storage and what we can do in that moment. Context If we take a look on Scalability Targets of Azure Storage ( https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/ ) we will observe that the limits are prety high. But, based on our business logic we can end up at this limits. If you create a system that is hitted by a high number of device, you can hit easily the total number of requests rate that can be done on a Storage Account. This limits on Azure is 20.000 IOPS (entities or messages per second) where (and this is very important) the size of the request is 1KB. Normally, if you make a load tests where 20.000 clients will hit different blobs storages from the same Azure Storage Account, this limits can be reached. How we can detect this problem? From client, we can detect that this limits was reached based on the HTTP error code that is returned by HTTP