Skip to main content

Windows Azure Emulator, Web Apps & 500 Errors caused by IIS Express

Windows Azure Emulator is a tool that provide us the ability to debug and run application for Windows Azure on our machine.
When we have a WEB application, by default when we run our application on the local machine will use IIS Express. 90% of the people will say: That’s great, I don’t need a normal IIS for this. This is true until you use features of IIS that are not supported on IIS Express.
For example “IPSecurity” section, that give us the ability to control what IPs we allow to access our application. If we run a web application into a web role with this configuration, we will receive a 500 error code. After this we will spend 1h to activate the feature that allow us to see the custom error and in the end we will see 500.19 internal error: “This configuration section cannot be used at this path. This happens when the section is locked at a parent level. Locking is either by default…”.
What should we do next? An option is to comment the configuration but WAIT. If we open the properties of Azure project, under the Web section we will see that we can select if we want to use IIS Express of the normal IIS. By default IIS Express is selected.
I highly recommend to not use IIS Express in the development phase, especially when you don’t have a simple web application.

Enjoy 500 errors!

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(

Azure AD and AWS Cognito side-by-side

In the last few weeks, I was involved in multiple opportunities on Microsoft Azure and Amazon, where we had to analyse AWS Cognito, Azure AD and other solutions that are available on the market. I decided to consolidate in one post all features and differences that I identified for both of them that we should need to take into account. Take into account that Azure AD is an identity and access management services well integrated with Microsoft stack. In comparison, AWS Cognito is just a user sign-up, sign-in and access control and nothing more. The focus is not on the main features, is more on small things that can make a difference when you want to decide where we want to store and manage our users.  This information might be useful in the future when we need to decide where we want to keep and manage our users.  Feature Azure AD (B2C, B2C) AWS Cognito Access token lifetime Default 1h – the value is configurable 1h – cannot be modified

What to do when you hit the throughput limits of Azure Storage (Blobs)

In this post we will talk about how we can detect when we hit a throughput limit of Azure Storage and what we can do in that moment. Context If we take a look on Scalability Targets of Azure Storage ( https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/ ) we will observe that the limits are prety high. But, based on our business logic we can end up at this limits. If you create a system that is hitted by a high number of device, you can hit easily the total number of requests rate that can be done on a Storage Account. This limits on Azure is 20.000 IOPS (entities or messages per second) where (and this is very important) the size of the request is 1KB. Normally, if you make a load tests where 20.000 clients will hit different blobs storages from the same Azure Storage Account, this limits can be reached. How we can detect this problem? From client, we can detect that this limits was reached based on the HTTP error code that is returned by HTTP